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We have performed large-scale off-lattice computer simulations in a model system of swollen main-chain liquid-crystalline
elastomers, constituted of weakly reticulated soft Gay-Berne chains, investigating both nematic and smectic morphologies. We
present isostress Monte Carlo results for temperature-scan and stress-strain experiments, and connect to typical experimental
observables, such as sample dimensions, specific heat, deuterium magnetic resonance spectra, and scattered X-ray patterns. We
find that the results reproduce the main features of main-chain elastomers, e.g., a pronounced strain-alignment coupling and the
existence of two (nematic-isotropic and smectic-nematic) order-disorder phase transitions. The nematic-isotropic transition in
our system turns out to be weakly first-order.

1 Introduction

Liquid crystal elastomers (LCEs) — polymer networks with
embedded mesogenic units — are soft functional materials
that respond to external stimuli (such as temperature varia-
tion, external field, or ultraviolet light) with macroscopic elas-
tic deformations1,2. Although qualitatively the behaviour of
these systems is reasonably understood, their application for
actual sensing devices or actuators3 requires a more profound
insight at the microscopic level. This insight can be gained
in principle from molecular simulations; however, not much
work has been done in this direction until now. In part, this
is because it is not easy to define a microscopic model that is
able to capture the basic mesogenic nature of the system and
that can be simulated notwithstanding the difficulties of equi-
librating three-dimensional networks. (These difficulties arise
from chain entanglement and topological constraints due to
the linkers.) The early simulation attempts were mostly based
on a lattice description of LCEs, which, however, turned out
to have only limited predictive power, especially as far as the
strain-alignment coupling is concerned4–7. Moreover, lattice
modeling cannot handle the interesting case of smectic elas-
tomers8,9, due to the inherent absence of translational degrees
of freedom. On the other hand, the existing off-lattice simula-
tion studies were mainly devoted to liquid crystal polymers in
the bulk10,11, or nanoconfined12, with only preliminary work
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performed on crosslinked LCE and on the simulation of stress-
strain or actuation-related experiments13.

Therefore, in the present study we readdress the issue, start-
ing from a full molecular description of crosslinked polymeric
chains with linked anisotropic mesogenic units as building
blocks, and carrying out large-scale Monte Carlo (MC) sim-
ulations in this model system. We focus on main-chain sys-
tems, significantly swollen with a liquid-crystalline solvent,
which are characterised by a greater mobility of polymeric
chains, while also being similar (in various aspects) to sam-
ples used in experiments by Urayama et al.14,15. This work
aims at reproducing some of the basic experiments involv-
ing the nematic-isotropic order-disorder transition: tempera-
ture scans and stress-strain runs, with the stress applied along
the director in the ordered nematic phase. More in detail, the
simulation output is used to predict selected experimental ob-
servables such as sample dimensions, specific heat, deuterium
magnetic resonance spectra, and scattered X-ray patterns.

2 Model: Intermolecular interactions

To model the interactions between mesogenic units, we used
the soft-core Gay-Berne potential16. The original Gay-Berne
(GB) potential17 is an anisotropic Lennard-Jones-like poten-
tial that turned out to be quite successful in simulating liquid
crystalline phases: isotropic, nematic, and smectic18. The re-
cent soft-core modification16 consists of reducing the steep-
ness of the repulsive part of the GB potential, replacing the
standard 12 inverse power dependence on interparticle sepa-
ration with a linear one. The possibility of limited particle-
particle “interpenetration” that the potential allows, offers a
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simplified description of a flexible molecular system, where
two interacting particles yield to some extent rather than just
harshly repelling each other. In addition, it facilitates MC
equilibration, without significantly affecting the phase be-
haviour of the molecular system as a whole. In order to be
more precise on the form of the model potential we employed
in this work, let us consider a pair of uniaxial molecules, i
and j, with the orientations of their long axes given by the
unit vectors ui and u j, respectively, and their centres separated
by the intermolecular vector ri j. Moreover, let ri j = |ri j| and
r̂i j = ri j/ri j. Then the original GB interaction energy for the
molecular pair is given by17

UGB
i j = 4εi j

{[
σs

ri j−σi j +σs

]12

−
[

σs

ri j−σi j +σs

]6}
. (1)

Here the molecular shape anisotropy is taken into account via
an orientation-dependent core-range parameter σi j defined as

σi j

σs
=
{

1− χ

2

[ (ui · r̂i j +u j · r̂i j)2

1+χ(ui ·u j)
+

(ui · r̂i j−u j · r̂i j)2

1−χ(ui ·u j)

]}−1/2
,

(2)
where χ = (κ2 − 1)/(κ2 + 1) and κ = σe/σs, while σe and
σs denote the molecular length and width, respectively. Fur-
ther, the anisotropy of the attractive forces is given through the
energy parameter εi j = ε0(ε′i j)

µ(ε′′i j)
ν, where ε0 is a character-

istic GB interaction energy scale, µ and ν are dimensionless
parameters, and

ε
′
i j = 1− χ′

2

[ (ui · r̂i j +u j · r̂i j)2

1+χ′(ui ·u j)
+

(ui · r̂i j−u j · r̂i j)2

1−χ′(ui ·u j)

]
, (3)

ε
′′
i j = [1−χ

2(ui ·u j)2]−1/2. (4)

Here χ′ = (κ′1/µ − 1)/(κ′1/µ + 1) and κ′ = εs/εe, with εs

and εe standing for the attractive well depths for the side-
by-side and end-to-end configurations of a molecular pair,
respectively. In this study we followed the Berardi et al.
parametrization of the GB potential, setting µ = 1, ν = 3,
σe/σs = 3, and εs/εe = 518. For a typical rod-shaped meso-
gen one has σs ≈ 5×10−10 m for the short molecular axis and
ε0 = εs ≈ 100kBTNI = 1.38×10−21 J for the characteristic en-
ergy scale. The latter estimate was made by comparing a re-
alistic nematic-isotropic (NI) transition temperature TNI in an
ordinary monomeric liquid crystal (say, TNI = 355 K) with the
corresponding reduced temperature T ∗NI = kBTNI/ε0 ≈ 3.55 as
obtained from Monte Carlo simulations with the original GB
potential, Eq. (1)18.

In the soft-core (SC) potential modification the strong in-
termolecular repulsion of the original GB interaction (1) is
replaced by a significantly weaker repulsive potential. The
corresponding energy contribution for the molecules i and j is
assumed to increase linearly at short intermolecular distances

and is written as16

USC
i j = m(ri j−σi j) . (5)

Here m regulates the slope of the potential and hence its
stiffness, while σi j is the core-range parameter given by
Eq. (2). Introducing a sigmoidal logistic function fi j =
1/
{

1+ exp [n(σi j− ri j)]
}

, the original GB and the SC poten-
tial can be blended continuously to yield a new combined po-
tential

UGBS
i j = (1− fi j)UGB

i j + fi jU
SC
i j . (6)

The parameter n is related to the width of the transition re-
gion where features of both potential types are present. Fol-
lowing Ref.16, we set m = −70ε0/σs and n = −100/σs to
retain the attractive features of the original GB potential, as
well as the soft repulsive core of the SC potential.

We assumed the intermolecular potential (6) to act between
all mesogenic unit types in the sample, non-bonded as well
as bonded. However, in order to build an elastomer, meso-
gens have to be linked into a network. To model main-chain
polymers we introduced bonding sites at the two ends of the
GB monomers11,12. Further, to model reticulation we placed
an additional reactive site on the monomer equator, as de-
tailed later on. Then the additional bonding energy between
two bonded monomers was represented with the finitely ex-
tendable nonlinear elastic potential (FENE)19, applied as both
stretching and bending potential. In comparison with the stan-
dard Hookean spring potential the FENE potential penalises
large deviations from equilibrium more severely. In addition,
it also sets a maximum stretch and bend range.

For a bond connecting two adjacent monomers i and j with
instantaneous bond length si j one can calculate the deviation
from its equilibrium value se, i. e., δsi j = si j− se. The maxi-
mum allowed δsi j is denoted by δsm. Further, the bond angle
θi j can be defined as the angle between the preferred bond
directions, as imposed by each monomer11. Similarly, the an-
gular deviation δθi j = θi j−θe from the equilibrium value θe

is introduced for the bond angle, and the largest δθi j denoted
by δθm. Then, the FENE spring bond energy is given by11,12

UFENE
i j =−ksδs2

m log

[
1−

δs2
i j

δs2
m

]
− kθδθ

2
m log

[
1−

δθ2
i j

δθ2
m

]
.

(7)
In Eq. (7) the first term refers to bond stretching and the sec-
ond to its bending. The force constants ks and kθ regulate
the bond stiffness for the relevant deformation mode. Here
we chose se = 0.15σs, δsm = 0.25σs, and ks = 500ε0/σ2

s ≈
2.76 N/m for stretching, and θe = 0◦, δθm = 150◦, and kθ =
3.8×10−4ε0/deg2 ≈ 1.72×10−21 J/rad2 for bending11,12.

To obtain the total interaction energy for a system of N par-
ticles it is necessary to collect all non-bonded (soft-core GB)
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Fig. 1 LCE sample network architecture as revealed after a negative
pressure shock. Red, green, and blue colour correspond to molecular
alignment along x, y, and z, respectively. Swelling molecules are not
shown. The average polymer strand direction is parallel to the
z-axis. Note the interstrand crosslinks (shown in red or green).

and bonded (FENE) intermolecular contributions. The total
reduced energy (per particle) can then be written as

U∗ = (Nε0)−1
N

∑
i=1

N

∑
j=i+1

(
UGBS

i j +wi jU
FENE
i j

)
, (8)

where wi j = 1 if the monomeric units i and j are bonded, and
wi j = 0 otherwise. (Only up to one bond per monomer pair
is possible.) Note that the evaluation of the double sums in
Eq. (8) becomes unfeasible for very large samples because of
the increasing computational effort that scales as ∼ N2. How-
ever, since the GB-type and FENE interactions considered
here are relatively short-ranged, we introduced an interaction
cutoff in the calculation of U∗, together with a Verlet neigh-
bour list for each molecule20. Here the selected interaction
and neighbour list cutoff radii were 4σs and 5σs, respectively.
A further reduction of the computational cost was obtained
during neighbour list calculation by using cell linked-lists21.
In this case the resulting computational cost scales approxi-
mately linearly with N.

3 Model: Sample architecture and preparation

For simplicity, we built our elastomer sample exclusively
from identical GB particles. Our intention was to produce a
highly responsive main-chain LCE material suitable for ac-
tuation through temperature variation etc. Experimentally, a
two-stage crosslinking procedure is needed to obtain a sample
with suitable performance22. In the first stage polymeriza-
tion proceeds to form main chain strands. The chains are then
ordered by an external field (mechanical or electric), which
is followed by a second polymerization leading to reticula-
tion with a typical crosslink density below ∼ 10%. Hence
this procedure results in an imprinted directional anisotropy,
yielding a pronounced strain-alignment coupling. Imitating
these experimental steps, we built our sample in an initially
cubic simulation box as a regular square array of vertical
polymer strands (Fig. 1). The bonding sites for molecules
of each strand were located at the two molecular ends and
the preferred bond direction was chosen parallel to the long
axis of each molecule. In this way the vertical direction, the
z-axis, became privileged, representing the direction of im-
printed anisotropy. Then, each of the strands was linked via
a single GB particle — acting as a crosslinker — to its near-
est neighbours along x and y. The crosslink position along
the z coordinate was selected at random. In this scheme the
strand molecules that are additionally bonded by a crosslinker
to the adjacent strand became trifunctional: the third bond-
ing site was situated at the particle equator and the preferred
bond direction was parallel to the short molecular axis. Fi-
nally, the empty space between the now connected strands was
uniformly filled with non-bonded swelling GB monomers. Af-
ter completing this assembly stage, the sample was uniformly
compressed to remove the remaining void space.

The details for our samples are: the polymer network con-
sists of an 11× 11 square network of strands, containing 30
anisotropic beads each, plus of 2 crosslinking beads per strand.
In total this amounts to 3872 GB particles building up the LCE
network. Then, further 4128 GB “solvent” monomers were
added to give a total of 8000 particles in the system. — For a
more reliable calculation of X-ray patterns, a limited number
of runs with significantly larger samples containing 216000
molecules was also carried out. These samples were obtained
by maintaining the architecture and the corresponding ratios of
the small samples, rescaling them by a factor of 3 along each
of the Cartesian axes. — For all samples, periodic boundary
conditions were applied at the simulation box boundaries.

The compression runs following each sample assembly
were carried out at a reduced pressure p∗ = pσ3

s /ε0 = 10
and resulted in a sample with reduced density ρ∗ = Nσ3

s /V ≈
0.287, where V denotes the volume, approximately matching
the density of the monomeric GB system considered in Ref.18.
In the following we are going to refer to a sample obtained at
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Fig. 2 Sample snapshots at different temperatures. (The corresponding T ∗ values are indicated above each image.) The orientation-dependent
colour coding for the network particles is the same as in Fig. 1, while all non-bonded monomers are shown in grey. An elongated and ordered
sample at low T ∗ becomes flat and disordered upon heating above the nematic-isotropic transition temperature. Smectic layering along the
z-axis can be observed for T ∗ = 1.5.

this stage of the preparation procedure as to the reference sam-
ple.

4 Model: Monte Carlo simulations

In the studies of our main-chain LCE samples we used isobaric
and isostress Metropolis-type Monte Carlo simulations5,23 for
sample preparation and for performing simulated experiments,
respectively. To ensure sufficiently efficient sampling of phase
space, we carried out several trial move types. (i) Transla-
tional moves. For this move type the selected GB particle was
displaced by a randomly generated vector, maintaining parti-
cle orientation. (ii) Rotational moves. Here the selected parti-
cle was rotated by a random angle around a randomly selected
Cartesian axis24. The particle centre of mass was not moved.
(iii) Bonded pair rotations. This move type concerned only
doubly linked GB particles in the polymer strands, excluding
the crosslinks. The selected pair of bonded particles was ro-
tated by a random angle about an axis connecting the far-away
ends of the particle pair. (The far-away ends are bonded to the
corresponding neighbours along the polymer strand.) (iv) Re-
size moves. This collective move type involved all GB par-
ticles in the sample. In the move two (out of three) sides of
the simulation box were chosen at random, each of them to
undergo a different random variation. The trial value for the
third box side was calculated from the constant-volume con-

straint to ensure sample incompressibility. Through this move
the initially cubic simulation box was deformed as a whole
and gradually turned into an orthogonal parallelepiped. The
polymer strands were deformed affinely, i.e., in geometric pro-
portion to the simulation box. The trial configurations violat-
ing the maximum-length or maximum-angle constraints of the
FENE potential were rejected automatically. — Note that all
of the above trial move types are reversible and non-biased.

In our simulations one Monte Carlo cycle consisted of at-
tempting translational and rotational moves for each GB par-
ticle. The sequence of particles to be rotated and moved
in a MC cycle was generated by a random shuffling algo-
rithm. In addition, bonded pair rotations were also attempted
for all eligible particle pairs. Following the Metropolis algo-
rithm23, the proposed trial move resulting in a reduced en-
ergy change ∆U∗ = (U∗)new− (U∗)old was accepted at tem-
perature T with a probability min[1,exp(−Nε0∆U∗/kBT )].
— Moreover, every 5 cycles a sample resize move was at-
tempted. In the isostress simulation, external stress was ap-
plied along the z-axis. To measure the resulting deforma-
tion, λz was conveniently defined as a ratio of the actual and
the reference sample simulation box sizes along the z-axis.
Further, reduced stress σ∗ = Σzzσ

3
s /ε0 was introduced, where

Σzz denotes the engineering stress for stretching/compression
along the z-axis, calculated with respect to the surface area
corresponding to a face of the reference sample. A constant-
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volume resize move deforming the simulation box side along
z by ∆λz = (λz)new− (λz)old was then accepted with a proba-
bility min{1,exp [−Nε0(∆U∗−σ∗∆λz/ρ∗)/kBT ]}5,25. — Fi-
nally, for each of the trial move types the move amplitudes
were adjusted on the fly during MC evolution to ensure an
acceptance between 45% and 55%. At the same time it was
checked by monitoring the amplitudes that these conditions
were sufficient for the system to evolve. Further, the Verlet
neighbour lists were refreshed after every MC cycle, while the
cell-linked list updates were performed every 5000 cycles.

To provide a further simulation speedup, two different par-
allelization schemes were used in the MC simulation code.
(i) For small samples (N = 8000), parallelization was applied
only to the calculation of the interaction energies, while the
Metropolis algorithm itself was not modified. Due to a rather
frequent creation/annihilation of parallel threads in the simula-
tion such a scheme does not scale well with the incresing num-
ber of threads. (ii) In large samples (N = 216000), however,
in a given MC cycle the entire Metropolis procedure was dis-
tributed among parallel threads, making use of the cell linked-
list structure, and taking care (with an appropriate random
number generation) that the continuity of the Markov chain
is not disrupted. Such a scheme requires a less frequent thread
creation/annihilation and is therefore rather efficient even for
a large number of parallel threads; however, it can only be im-
plemented for a large enough sample where cell linked-lists
can be established21.

5 Observables

The most immediate observable that can be obtained from
simulations is the reduced energy U∗, Eq. (8). Its fluctuations
during a MC run can be related to the heat capacity of the
system, CV , whose anomalies are used in calorimetry for the
detection of structural phase transitions. The corresponding
dimensionless specific heat per particle can be introduced as

c∗V =
CV

NkB
=

N(〈U∗2〉−〈U∗〉2)
(T ∗)2 , (9)

where T ∗ = kBT/ε0.
Another set of observables that is readily obtained from

simulations are the actual sample dimensions, i.e., the simula-
tion box sides. In our plots, the average reduced box sides
λx, λy, and λz are displayed, where the normalization was
performed with respect to the cubic reference sample with
λx = λy = λz = 1.

Moreover, in liquid-crystalline systems such as LCEs it
is relevant to measure or calculate nematic order parame-
ters based on the second-rank ordering matrix. For the jth
molecule with orientation u j at a certain MC sample sweep
this matrix reads Q j = (1/2)(3u j ⊗ u j − I), where I denotes

c∗V
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Fig. 3 Temperature scan at zero external stress. Top. Specific heat.
Centre. Simulation box sides: λx (+), λy (×), and λz (4). Bottom.
Nematic order parameters: global P2 (+) and local PL

2 (×).
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the identity matrix. Now one can introduce a global order pa-
rameter, P2, obtained by calculating the largest eigenvalue of
the sample-averaged ordering matrix (1/N)∑

N
j=1 Q j in each

MC cycle, and then subsequently averaging these eigenval-
ues over MC cycles. However, since LCEs show features of
polymers, including possible glassy behaviour, it may also be
helpful to quantify local ordering. This can be done by sep-
arately diagonalizing each of the local (molecular) ordering
matrices 〈Q j〉, obtained as an average of Q j over MC “time”,
providing the corresponding largest eigenvalues P j

2 for each
molecule, and calculating a sample-averaged local order pa-
rameter PL

2 as PL
2 = (1/N)∑

N
j=1 P j

2 . Any significant deviation
of PL

2 from P2 implies a difference between ensemble and time
averaging, and may be a signature of glassy ordering in the
system. (Herewith PL

2 takes the role of the Edwards-Anderson
order parameter introduced in spin glass systems26.)

Experimentally, local orientational order in LCEs is
often probed by deuterium nuclear magnetic resonance
(2H NMR)27–30. Quadrupolar interactions in deuterated
mesogenic units result in an orientation-dependent frequency
splitting31 that, for the jth molecule, is given by ω

j
Q =

±δωQ[3(u j · b)2− 1]/2. For simplicity, here it has been as-
sumed that the motionally-averaged electric field gradient ten-
sor of the carbon-deuteron bond in a mesogenic molecule is
effectively uniaxial and that the symmetry axis of the ten-
sor is parallel to the long molecular axis, u j. Further, b
stands for a unit vector along the NMR spectrometer mag-
netic field and δωQ denotes a coupling constant31. Note that
the above averaging assumption applies well to monomeric
mesogens — here the averaging merely rescales the δωQ con-
stant, maintaining the full spectral shape — while it may be
somewhat less plausible for the bonded mesogens whose mo-
tions are partially hindered. — In the present study we used
our simulation output, i.e., a sequence of molecular configu-
rations, to calculate the characteristic 2H NMR spectra. Like
in an actual NMR experiment, the spectra were obtained by
first generating the free induction decay (FID) signal G(t) =
〈exp [i

∫ t
0 ω

j
Q(t ′)dt ′]〉 j, where t stands for time and 〈· · · 〉 j de-

notes averaging over particles, and then Fourier-transforming
it32. In each run, we simultaneously calculated three spec-
tra, with the spectrometer magnetic field directed along the x,
y, or z-axis. The duration of one NMR cycle, 2π/δωQ, was
fixed to 1024 MC cycles, while the total length of the gener-
ated FID signal was 220 MC cycles. — Translational diffusion
is expected to be low in the system considered and does not
significantly affect the calculated spectra.

Another important experimental technique in LCE stud-
ies, capable of probing also the positional order, is X-ray
scattering. Here, in the scattered X-ray pattern calculation
we employed the procedure followed by Bates and Luck-
hurst for a monomeric GB system33. The procedure as-

sumes that the scattering factor for a GB particle (represented
by a uniaxial ellipsoid) is given by F j(q,u j) = 3(sinγ j −
γ j cosγ j)/γ3

j , where q is the scattering vector, while γ j carries
the complete information on the particle orientation u j and
anisotropy34. Here γ j = (qσs/2)(κ2 cos2 φ j + sin2

φ j)1/2, q =
|q|, and cosφ j = (q ·u j)/q. (κ and σs have the same meaning
as in Section 2.) Then, the total scattering amplitude for a sys-
tem of N ellipsoids reads FT (q) = ∑

N
j=1 F j(q,u j)exp(iq · r j),

where r j is the position of the jth GB particle. Finally,
the resulting total scattering intensity is calculated as I(q) =
FT (q)F∗T (q). Note that since the scattering patterns are cen-
trosymmetric, i.e., I(q) = I(−q), only half of each pattern
needs to be actually calculated. Above we have assumed that
the scattering is dominated by the mesogenic units and that
the contribution originating from flexible spacers (e.g., alkyl
or methylene) connecting the mesogens is negligible. This is
expected to be a good approximation in view of the higher
electron density in the mesogenic cores forming the elastomer
chains. — The X-ray patterns were calculated every 200 MC
cycles and averaged over a production period of 263× 103

cycles. Here, rather large 216000-particle samples had to be
considered in order to reduce the finite-size artifacts close to
the centre of the scattered pattern.

6 Results: Temperature scans

First we performed a series of zero-stress simulations at differ-
ent temperatures. All runs were launched from the reference
sample and left equilibrating for at least 9× 106 MC cycles.
Then, various averages were accumulated over more than 106

MC cycles. Typical snapshots of the molecular organization
are displayed in Fig. 2, while the temperature dependences of
the specific heat, sample dimensions, and nematic order pa-
rameters are shown in Fig. 3. The specific heat anomalies in
the temperature scan reveal the existence of two phase tran-
sitions. The nematic-isotropic transition, estimated to occur
at T ∗NI ≈ 6.25± 0.25, results in a significant change both in
the molecular organization as well as in sample shape. Below
T ∗NI mesogenic units exhibit nematic ordering and the sample
is elongated along the z-axis, which is consistent with the di-
rection of the orientational anisotropy imprinted upon sample
preparation. On the other hand, the sample is isotropic above
T ∗NI , and is compressed (or flattened) along the z-axis. In both
cases the sample deformation (measured from the cubic refer-
ence sample) is quite uniaxial.

For a monomeric soft-core GB system with the same
parametrization as in Ref.16 and density ρ∗ = 0.3 the NI tran-
sition is seen at T ∗NI ≈ 4.9. In a partially bonded system like
the present one where the molecular motions are hindered due
to an increased effective molecular length, the ordered system
should be more stable and the NI transition is indeed observed

6 | 1–11



7.54.53.01.5

Fig. 5 Scattered X-ray patterns with indicated corresponding T ∗ values: Smectic (T ∗ = 1.5), nematic (T ∗ = 3.0 and 4.5), and isotropic
(T ∗ = 7.5) LCE. The simulated X-ray beam was directed perpendicular to the nematic director pointing in the vertical direction. The side of
each square frame in scattering vector scale corresponds to 6π/σs ≈ 38/nm.

at a higher temperature. Note also that at very low tempera-
tures smectic layering occurs. The smectic-nematic (SN) tran-
sition temperature is estimated as T ∗SN ≈ 2.0±0.5, which is al-
most the same as in the original monomeric GB system18. In-
deed, the SN transition mainly concerns translational degrees
of freedom, and the presence of the hindering intermolecular
bonds is expected to play a less important role in this case.

From Fig. 3 it can be deduced that while the NI specific heat
peak is well-visible but quite suppressed in comparison with
the monomeric system, the NI transition in the present case
is still rather sharp and discontinuous in the degree of order,
P2, as well as in sample dimensions, λi (i = x,y,z). This ob-
servation is further supported by the existence of long-lived
metastable states at T ∗ = 6.25, and compares well with some
(but not all) experimental studies. Namely, the NI transition
observed in some early LCE samples was rather smooth due to
quenched disorder or internal stresses stemming from residual
irregularities, even in monodomain materials28,35. The impor-
tance of irregularities can, however, be reduced by decreas-
ing crosslink concentration, or by swelling the samples with
a liquid-crystalline solvent28–30, thus driving the LCE sys-
tem behaviour from supercritical (smooth) to subcritical (dis-
continuous). Hence, the subcriticality observed in our model
sample is not really surprising: The sample is rather regular
and monodomain-like by construction, and — in addition —
contains a rather high percentage of monomeric liquid crys-
talline units. (Note that the NI transition for the pure GB
monomers is discontinuous.) Recall that the only type of irreg-

ularity introduced during sample preparation is the random-
ness in crosslink positions, effectively resulting in moderate
polymer strand length polydispersity; however, this appears
not to be enough to significantly affect the overall system be-
haviour. We further explored this issue by running tempera-
ture scans for three more samples with different crosslink po-
sitions, keeping the crosslink concentration constant, but the
results (including T ∗NI values) remained essentially unchanged
at our present temperature resolution. For this reason the fol-
lowing discussion will be focused on a single LCE sample.
— Note also that a single NI transition is observed despite
the two-component character of the system, which suggests
that there is no significant phase separation of the bonded and
non-bonded (monomeric) mesogens in the temperature range
examined.

Additional information can be extracted from the 2H NMR
spectra sequence shown in Fig. 4. In the Figure, the sig-
nal originating from the network molecules is separated for
clarity from the total response that includes also the swelling
monomers. First we notice that above T ∗NI the molecular
motions (apparently fast with respect to the NMR timescale
2π/δωQ) average out the quadrupolar interactions, which re-
sults in a single spectral peak at zero splitting. Below T ∗NI in
the nematic (and smectic) phase, however, a pronounced split-
ting can be observed. Note that the splitting for b||z is roughly
twice the value obtained for b ⊥ z. (Here z denotes a unit
vector along the z-axis.) Further note that each of the spec-
tral peaks has a pronounced structure: The contribution from
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T ∗ = 9.5

T ∗ = 7.5

T ∗ = 5.5

T ∗ = 3.5

T ∗ = 1.5

ωQ/δωQ

1.00.0-1.0

Fig. 4 2H NMR spectra: A temperature scan with the spectrometer
magnetic field b applied along x, y, and z-axis shown in red, green,
and blue, respectively. The contribution originating from the
elastomeric network (light lines) is shown separately from the total
NMR signal (heavy lines) that includes the swelling monomers as
well. The overlap of the b||x and b||y spectral sets implies uniaxial
molecular ordering with the respect to the z-axis.

the bonded network is located at a somewhat higher splitting
value than that of the monomers. This differentiation may
be attributed to a lower degree of order for the non-bonded
monomer molecules in comparison with the bonded network
ones. For example, assuming the spatial variation of the local
nematic director to be negligible, from the spectra simulated
at T ∗ = 3.0 one can estimate the corresponding approximate
P2 values as 0.88± 0.02 and 0.82± 0.02 for the network and
monomer GB particles, respectively. Despite the even larger
difference in the degree of order of the two subsystems ob-
served at T ∗ = 6.0, i.e., slightly below the NI transition, there
seems to be a single NI phase transition, as already stated
above. However, there also seems to be some residual parane-
matic order above T ∗NI due to the bonded network, which re-
flects in nonzero values of the local PL

2 order parameter for
T ∗ > T ∗NI (Fig. 3, bottom). In the spectra, this paranematic
order results in some barely visible signal outside the peak
centered at ωQ = 0.

Lowering the temperature brings about an increased NMR
splitting as the order increases (Fig. 4), but NMR does not
show the onset of smectic order or unveil the nature of the low-
temperature phase transition seen by calorimetry. On the other
hand, scattered X-ray patterns can be particularly useful in
assigning the nature of the low-temperature phase; therefore,
some of the calculated patterns are presented in Fig. 5. Start-
ing with the high-temperature pattern for T ∗ = 7.5, one can
notice a circular halo instead of a diffuse ring expected from
lateral short-range intermolecular correlations in an isotropic
liquid crystal. The unexpected absence of a pronounced dif-
fuse ring may be partly attributed to the soft-core potential
allowing for non-negligible particle overlap at high tempera-
tures, which can be confirmed also by inspecting the corre-
sponding pair correlation functions. Cooling the sample to
T ∗ = 4.5, the scattered pattern becomes nematic-like, with
very diffuse lateral arcs and two marked reflections along the
vertical axis corresponding to the orientation of the nematic
director. Note that here and at lower T ∗ the particle over-
lap becomes almost negligible. At T ∗ = 3.0, still in the ne-
matic phase, the pattern is similar to the previous one, with
the diffuse lateral arcs slightly more pronounced. Finally, for
T ∗ = 1.5 the two lateral arcs become much narrower, which
corresponds to increased orientational order, while a second
order of diffraction along the director and a significant in-
crease in intensity of the first-order peaks indicate the onset
of a smectic-like layering. The first-order peaks can be ob-
served at q|| ≈ (0.33± 0.01)× 2π/σs from the centre, while
the lateral arcs peak at q⊥ ≈ (0.99±0.01)×2π/σs. Both re-
sults are compatible with rather closely packed layered GB
particles 3σs long and σs wide, as used in our simulations.
Note also that the central cross-like structure in all patterns is
a finite-size artifact and should be ignored33.
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Fig. 6 Stress-strain isotherms: Sample dimension along the z-axis
(top) and the global nematic order parameter (bottom); T ∗ = 3.0
(+), T ∗ = 5.0 (×), T ∗ = 7.0 (4), and T ∗ = 9.0 (◦). Here σ∗ = 0.1
approximately corresponds to 1.1 MPa engineering stress. The
dotted lines represent the linear fits used to estimate the elastic
moduli.

7 Results: Stress-strain runs

In a LCE material, orientational ordering can be induced not
only by decreasing temperature, but also by applying a me-
chanical field, i.e., external stress. Here stress was applied
to equilibrated samples at T ∗ = 3.0 and T ∗ = 5.0 in the ne-
matic phase, as well as to samples at T ∗ = 7.0 and T ∗ = 9.0
in the isotropic. For every value of reduced stress σ∗, at least
4× 106 MC cycles were performed for further equilibration
and at least 106 for production. In all cases stress was applied
along the z-axis, i.e., parallel to the nematic director, if exis-
tent. (The case where the stress is applied perpendicular to the
nematic director is expected to invoke soft elastic deformation
modes and will not be considered here.)

The stress-strain isotherms are displayed in Fig. 6. Pulling
along the z-axis from the nematic phase, the degree of order is
enhanced and the sample slightly elongated. The correspond-
ing elastic moduli are estimated to be 770 MPa and 310 MPa
for T ∗ = 3.0 and T ∗ = 5.0, respectively, which exceeds the ex-
perimental values by more than one order of magnitude37,38.
Recall, however, that in both cases the polymer strands are
highly ordered already prior to the application of stress, espe-
cially for the lower temperature, and that hence the additional
elongation mainly comes from extending the FENE bonds.
This and the resulting decrease of the elastic modulus with
increasing temperature suggest that the observed elasticity is
energetic rather than entropic. This is in agreement with the
absence of hairpins in our samples that could give rise to en-
tropic rubber elasticity in a highly aligned sample39,40. (Note
that the average distance between crosslinks along a polymer
strand is only 7.5 GB units.)

In the isotropic phase, the pulling starts from a disordered
sample. For T ∗ = 7.0, there is a discontinuous stress-induced
isotropic-to-nematic transition at σ∗ ≈ 0.05. For T ∗ = 9.0,
on the other hand, there is no discontinuity in the stress-strain
curve. Consequently, there seems to be a critical point in be-
tween the two isotherms. Note that such critical behaviour is
consistent with theoretical predictions based on symmetry ar-
guments36 and with the predictions of an early lattice model
for LCE5. — Again, one can estimate the elastic moduli for
small deformations and low σ∗; the results for T ∗ = 7.0 and
T ∗ = 9.0 are 210 kPa and 410 kPa, respectively, and com-
pare reasonably well with experiment38. Thus, in compari-
son with the nematic phase, our LCE material is substantially
softer when it is isotropic. And, even more importantly, now
there is an increase in the elastic modulus with increasing tem-
perature, which may be a signature of entropic elasticity. This
phenomenon occurs only if the polymer strands are capable
of sampling different pathways between the crosslinks; in our
samples this indeed is possible to some extent (see, e.g.,the
calculated 2H NMR spectra) in the disordered isotropic phase,
but not in the highly ordered nematic or smectic ones.
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8 Conclusions

We have performed a series of large-scale Monte Carlo
simulations of swollen main-chain liquid crystal elastomers.
The simulations were based on an off-lattice model consist-
ing of monomer chains made of soft Gay-Berne ellipsoidal
anisotropic beads, connected by FENE springs and reticulated
in the aligned state with a small number (∼ 6%) of short con-
necting GB linkers. In addition, the samples were swollen
with a significant amount of GB monomers.

The properties of this simple softly repulsive-attractive net-
work reproduce the key features of swollen main-chain elas-
tomers, e.g., a pronounced strain-alignment coupling and
the existence of nematic-isotropic and smectic-nematic order-
disorder phase transitions. In our model system, the isotropic-
nematic transition is a well-defined first-order transition and
takes place at a higher temperature than in the corresponding
monomeric system. It is accompanied by notable sample de-
formation and a significant change in the simulated 2H NMR
spectra. Moreover, the nematic-smectic transition results in a
layered system and thus reflects in the predicted X-ray scatter-
ing patterns. Both transitions are also visible in the simulated
calorimetric data.

Moreover, we have performed virtual stress-strain experi-
ments, both in the nematic and in the isotropic phase, with the
external stress applied along the director in the former case.
The elastic response in the isotropic phase shows features of
entropic rubber elasticity, with a rather low elastic modulus,
comparable to that measured in real samples. On the con-
trary, in the highly ordered nematic the material turns out to
be rather stiff. All in all, the obtained stress-strain isotherms
agree well with the critical behaviour predicted by an earlier
lattice model, as well as with the behaviour of real weakly
crosslinked and/or swollen LCE materials.
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